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CONCLUSION

Using the difference in energy distribution for circular
waves transmitted through ferrite loaded circular wave-
guide, an isolator was constructed with 30 db isolation
from 8 to 11 kmc. Its insertion loss is less than 3 db and
it does not appear to be unduly critical with respect to
any of the operating parameters. By providing means
for varying the applied field the isolator becomes an
amplitude modulator or electronic switch.

Since the energy transmitted in the forward direction
tends to go around the ferrite, low magnetic and dielec-
tric losses occur in it. This approach to isolation is
promising for higher powers. A more suitable choice of
material will reduce the insertion loss presently ob-
served.

The frequency of maximum isolation for a single
ferrite rod is inversely proportional to the ferrite di-
ameter. Various diameter rods can be added in series to
increase the isolation bandwidth. However, with the
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ferrite used an increase in insertion loss on the high
frequency side discourages this beyond a 3 kmc band-
width. The increase in insertion loss which occurs at
higher frequencies is attributable to dielectric wave-
guide effects for the positive wave. With a dielectric
constant of 13 the ue product is large even if u is as low
as 0.3. In such a case, dielectric waveguide type trans-
mission is expected to become noticeable at 11 kme.

The use of differential energy distribution for non-
reciprocal and magnetically controllable circuit ele-
ments is promising from the standpoint of stability,
bandwidth, and power handling capacity.
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An Approximate Analysis of Coaxial Line with

a Helical Dielectric Support*

J. W. E. GRIEMSMANN

cable with a helical dielectric support. The par-

ticular cable depicted bears the trade name of
Styroflex! derived from the fact that the dielectric helix
is built up in a winding operation from nonplasticized
polystyrene tapes giving to the final assembly a tight
grip on the center conductor and a good degree of allow-
able bending capability. The outer conductor in the
original design of the cable consists of an aluminum
sheath extruded over the dielectric. Other forms of cable
with helical dielectric support are also available.

This type of cable is of interest as an alternative to
broadband bead supported line, particularly for applica-
tions requiring long lengths of line or small diameter
cable where multiplicity of bead supports can lead to
high wave reflection characteristics in frequency bands
of interest.

SHOWN in Fig. 1 is a cutaway section of coaxial

* This analysis was conducted as part of the work under Signal
Corps Contract DA-36-039 sc-42500 with the Polytechnic Institute
of Brooklyn and was presented at the P.1.B. Symposium on Modern
Advances in Microwave Techniques, November 8-10, 1954.

} Microwave Res. Inst., Polytechnic Inst. of Brooklyn, Bklyn.,
Y

1 i’helps Dodge Copper Products Corp.

Fig. 1—Cut-away section of Styroflex cable.

The analysis given below shows that the total propa-
gation in the helical line can be concidered to be made
up of two component propagations, one following the
dielectric helix down the transmission line and the other
following a helical path perpendicular to the dielectric.
The latter type of propagation is that of an iterative
transmission line and introduces for the overall propa-
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gation characteristics of the line bands of propagation
and attenuation. For practical purposes, operation is
limited to frequencies approaching the first critical fre-
quency which occurs approximately when the helical
distance at the mean internal periphery measures an
electrical half-wavelength between centers of the dielec-
tric. The low frequency approximation which neglects
the helical distribution of the dielectric and assumes the
air and dielectric of the line to act in parallel is a satis-
factory one for a major portion of the lowest propa-
gating frequency region. The analysis given here shows
a sharp rise in attenuation as the cutoff frequency is
approached. This action is quantitatively confirmed by
attenuation measurements on the transmission line.

MEAN
A PFRIPHERY

27777
4 AV AV4
END VIEW SIDE VIEW
(a)
-~ /5 =
£==
o r | A —=
A 7
-r/ //
A yean A
PERIPHERY

EQUIVALENT PARALLEL PLATE STRUCTURE

{b)
Fig. 2

PARALLEL PLATE APPROXIMATION

The following analysis is based on the transformation
of the problem in coaxial geometry to one in parallel plate
geometry. Consider that the coaxial line shown in Fig.
2(a) is split radially from the outer conductor into the
inner conductor along the line A4 and for the entire
length of coaxial line. Opening the line along this cut
and continuously deforming it the parallel plate struc-
ture of Fig. 2(b) can be attained where the radial cut
plane of the coaxial line splits into the two side planes
through A A for the parallel plate line. It must now be
understood, of course, that a condition for the paral-
lel plate propagation is that the fields are identical in
the side planes in order that the parallel plate line can
again be reformed back into the original coaxial line.
The parallel plate structure of Fig. 2(b) is considered
to be part of a larger parallel plate system, the top view
of which is shown in Fig. 3, since it would be inappropri-
ate to consider edge effects for the parallel plate. The
region of interest from the propagation standpoint is
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that between the two side planes through A4-4. The
mode and nature of propagation in the parallel plate
line will now be very similar to that in the original
coaxial line although any numerical values obtained
represent an approximation to the values existing in the
coaxial line. The rigorous solution in suitable radial or
helical coordinates is required for exact values for the
propagation characteristics and fields of lines with
helical supports.

A

A
LY RESTIoV
a~ /
TSI LSy

A A
Fig. 3—Top view of extended parallel plate system.

FieLp COMPONENTS

In any fundamental mode type of propagation in the
parallel plate system there must be assumed to exist an
electrical field perpendicular to the plates. This corre-
sponds to a radial electric field in the coaxial line. The
existence of this electric field component E, which is
noted to be directed parallel to the dielectric surface
would require in general the two components H, and H,
to exist in order to satisly the boundary conditions
corresponding to refraction at the air-dielectric inter-
face. By trial the simplest mode which would satisfv the
Maxwell’s equations and boundary conditions was
found to be the following set:

IN AIR SECTIONS

ko
Hya = Ao[l - 1105—|—2jkzaz']e—isz,e_jk]"u (1)
wp
ky . .
Hzo = - —A0[1 + P05+2]kzo2l]E—Ikzoz,e—jkyy (2)
wp
E,, = Ao[l -+ I‘oe-l-?szoz']e—‘ikzoz'e—‘.’fkyu (3)

where 3z’ is measured from the symmetry planes of the
air sections.
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In DieELECTRIC SECTIONS

kze ; r4 ; 0 :
Hy, = Ae[l — T et2ihzes ]e—akzez e ihyy (4)
wp
ky , o
H, = — — A1 4 Tet2ikees’’ |mikae” ~ikyy  (5)
W
Eze = Acfl + Toet2ibee” [eibsesmikyy (6)

where 3’/ is measured from the symmetry planes of the
dielectric sections.

With low losses a suitable approximation is that &,,,
k.. and k, are respectively the phase constants in the
z direction in air, in the 2 direction in the dielectric and in
the y direction. The same phase constant %, in the air
and dielectric is necessary to satisfy the boundary con-
dition along the air-dielectric interface. 4, and 4. are
complex constants indicating the relative magnitudes
and phase of the field. The field distribution in the
cross section is determined by the reflection coefficient
T', in the air sections and I', that in the dielectric sec-
tions. It is implicitly assumed that the field is periodic
in the z direction and that the values of the complex
constants 4,, 4., I', and T', are determined by boundary
conditions at the air-dielectric interface, transmission
conditions and the power being transmitted.

For convenience in the understanding of the propa-
gation characteristics of the line, it is desirable to
consider that the total propagation is made up of two
partial propagations in parallel, one in the y direction
associated with the components E, and H,, and the other
in the z direction associated with E, and H,. The propa-
gation in the ¥ direction or in the direction parallel to
the dielectric has associated with it a constant cross
section and only one forward traveling wave is needed
to describe this propagation. The propagation in the z
direction must be considered as an iterative transmis-
sion line having successive sections of air and dielectric.
In order to satisfy the boundary conditions (or imped-
ance conditions) at the air-dielectric boundaries, it is
necessary to postulate forward and backward traveling
waves (or to include the reflection coefficients) in each
medium just as one would for an ordinary iterative
transmission line structure. As seen later, reflection co-
efficients are real at lines of symmetry in the air and
dielectric sections making them convenient reference
points for extensions Z’ and Z’/ in z direction.

Pruasg CONSTANT RELATIONSHIPS

The propagation constants in the y direction and g
direction must be consistent with the over-all propaga-
tion constant in each of the media. Thus, in the dielec-
tric sections,

k252 + ky2 = kek2 (7)

where k is free space phase constant and k. is relative
dielectric constant of medium. In air section

ket + k) = k2 ®
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where & for the air is assumed equal to that of free space.

In order to satisfy the condition that for the section
of the parallel plate line the fields in the side planes
must be identical, it is required that the phase of the
field at the points, & and ¢, shown in Fig. 3 must be
identical. This gives rise to another condition on the
phase constants which may be derived by requiring
that the change in phase of field experienced in going
from the point a to b in Fig. 3 is the same as the change
in phase in going from the point ¢ to the point ¢. The re-
sulting equation for this condition must be derived from
iterative line considerations.

ProracaTioN CHARACTERISTICS IN THE Z DIRECTION

In the g direction, the transmission line structure is
periodic and symmetrical with respect to propagation
in the forward or backward z direction. The description
for arbitrary terminating impedance is then conven-
iently given in terms of iterative impedances. Shown in
Fig. 4(a) is the equivalent transmission line (for wave
impedances) in the z direction for the extended parallel
plate structure. Also shown in this figure, plotted on an
admittance diagram, is a typical admittance cycle repre-
senting the locus of impedances of the transmission line
matched in its iterative impedance. In general, of course,
for this type of operation there will be standing waves in
both the air sections and dielectric sections of the line
but the iterative impedance matching implies that the
magnitude of electric and magnetic field is repeated at
successive corresponding structural points along the
transmission line. Since for any transverse plane the
points at the special A4 side planes, described before
in Fig. 3, are corresponding structural points in the
iterative transmission, the boundary condition that the
fields be identical at corresponding transverse side
plane points is in part satisfied. The requirement of the
boundary condition then remaining is that the phase be
identical at the corresponding transverse side points.
Determination of the phase constant for the iterative
type transmission line in the y direction is then required.
This solution will also yield the values of T', and T,
necessary for a quantitative knowledge of the field struc-
ture and the determination of attenuation constant for
this line.

For further analytical work, one of the two most con-
venient sets of reference planes in the iterative struc-
ture is the centers of the air sections corresponding to
the real admittance points V., on the admittance cycle.
Shown in Fig. 4(b) is the structure between two suc-
cessive reference planes terminated in the iterative
impedances Y, Since the section is symmetrical, the
value V., can be determined from

YV,. = \/Yopa/z) Ysh(1/2) (9)

where Y,,q9 is the admittance measured at the input,
a, with an open circuit at the center reference plane, d,
and Y is the admittance measured at the input
with a short circuit at the center reference plane d.
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From transmission line calculations, the values of these
admittances are determined to be the following:

d

?ﬂ (10)

[kw-li + tanﬂ(Ez—o— tan k.. i)] (11)
2 Ree 2

whence
w d
tan [kw~ -+ tan“1< tan &.. —):l
< kao\? 2 k 2
W w ko d
tan| k.,— - tan™1 ( tan & —)j!
2 2
I

the value of the reflection coefficient I', at the center
plane of the air section is then

Veo
(59
kza
wu¥ .,
1
(1)

. Vzo
Yopaisy=7—tan

[ (s
o— T+ tanTl{ ——tan &,
Wi 2 k

zo

. o
Ve, =—j — cot
wp

kZE

zo

;1 (12)

z€

r,

(13)

Alternatively, the reference planes for the start and
finish of the composite line could have been selected
as the center or symmetry planes for the dielectric sec-
tions which would correspond to the admittance Y. on
the schematic admittance cycle diagram of Fig. 4. By
appropriate substitution of variables the value of the
characteristic admittance would be found to be given by

zo

d k w
tan| k.. —-tan™! “tan h:——)jl
ke \ 2 k.. 2
Y.2= (14)
W d ze w
tan [kze ——tan™?! (——ftaq km:——)il
2 20 2
giving for
wpl
ke
T, =— (15)

For the structure shown in Fig. 4(b) the change in
phase from input to output, ®7, is determined from
iterative line considerations, being given by
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cos ®r = cos k.d cos kow

! <k” + kz") in k.dsin & (16)
> i i sin k. sin k., w.

In order to satisfy the boundary condition, correspond-
ing transverse points at the side planes must have the
same phase as previously discussed under Prase Con-
sTANT RELATIONSHIPS. Then, with reference to points
b and ¢ of Fig. 3, it is evident that

+ u(27) (17)

tan

whence

w4 d
cos &, = c0S k..d cos k.,w
tan 6

1 <kze + k20> . k (Z . k (16 )
—_—— ——— ] 81N R.Q S1N R, ,W. a
2 k;o kze

The phase constants k,, k.. and k., are now specified in
terms of the dimensions, w, d, and 8, and the frequency
or free space phase constant, k, through (7), (8), and
(16a). The form of the field can then be specified at any
frequency from an evaluation of I', and T, using (12)
through (15). In the expression relating ®r and %, above
n =0 corresponds to the lowest practical range of opera-
tion with a cutoff frequency of zero. Integer values of #
correspond to higher mode operation having finite cutoff
frequencies. The wavelength in the transmission direc-
tion (A,) mav be determined from

27 ky

N, siné

(18)

Low FREQUENCY APPROXIMATION

The low frequency approximation can be deduced
directly from the consideration that dielectric and air
sections act in parallel. The solution above reduces to
this solution under the assumption of sufficiently low
frequencies. For low frequencies, (16a) becomes under the
assumption that typically sin e =« and cos =1 —(a?/2)

(16b)

w 4+ d\?
(kl, ; > = (k.2d + k. w)(w + d).

tan

Using (7) and (8), the phase constants become

Rod + w\172
y = k<—j‘_—]> sinf = k kgffllz sin 6 (16C)
w [/
ke = k(ke — k.ppsin?g)t/? (7a)
kzo = k(l - kef/ sin? 0)1/2. (8&)

As indicated the expression
(ked + w>
w—+d
is recognized to be the effective relative dielectric con-
stant under the assumption that the dielectric sections
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and air sections are acting in parallel. For the iterative
line in the z direction, the admittance cycle diagram of
Fig. 4(a) reduces at low frequencies to a point for the
values of iterative wave admittances from (12) and (14)

k[k.2d -+ kw2 k
Vie=Y.= —l: — } = — k.2 cosb.
wul R(w + d) W

The expressions for the fields in the air sections be-
come from (1), (2), and (3),

21 — kg sin® 0)272

B, =4, ; (33,)
(1 — kyrsin®@)V2 4+ k2 cos @
H k E k. ° 0
0o & T Fufe © COo8
R (1a)
k
Iizo = Exukrj/'lm sin 6. (2&)

wu
For fields in dielectric sections from (4), (5), and (6)

2k — ko sin® 0)1/2

oo = 4. - (6a)
(ke — koss sin?6) 4+ keff”? cos 8
k
Hye = — E“keffllﬁ cos 8 (43)
W
k .
[{ze = E‘z:skpffl/2 sin 6. (Sa)

wp

The total magnetic field in both the air and dielectric
sections is noted to be transverse to the direction of
propagation and to have the value

k

k
HT = E:co’—— keffllﬂ = E:xem
Wl W

keffllz.

The wave impedance is noted to be the same for both
the air and dielectric sections supporting the low fre-
quency assumption of TEM propagation in a homogene-
ous dielectric material, having a dielectric constant
equal to the effective value given above. The propaga-
tion constant is that for a material with the effective
dielectric constant, k.

MobpEs oF OPERATION

In general, the field pattern and the consequent per-
formance characteristics of this type of transmission
line are dependent on two factors. The first of these is,
of course, the requirement that the phase is identical
at corresponding transverse side points as indicated in
Fig. 3 and covered by (16) and (17). The second factor is
the type of propagation in the z direction which, be-
cause of its iterative nature, will have pass and stop
bands as indicated by either (12) or (14). The influence
of the second factor is dependent on the construction of
the cable, being greater for smaller pitch angle, 6, and
greater influence of the dielectric. As the pitch angle
approaches m/2, the line is seen to approach a line with
a longitudinal dielectric support. In this case the propa-
gation in the g direction is not a significant part of the
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over-all propagation, but serves rather to determine the
cutoff frequencies of the higher modes and the variation
with frequency of the guide wavelengths for these
higher modes.

While the foregoing analysis is applicable for any
type of cable construction, consideration here will be
limited to the case where the component propagation in
the g direction is a significant part of the total propaga-
tion. Of chief concern will be the possible frequency
limitations on the lowest mode of operation. The higher
modes associated with a periodic variation of field with
the coordinate x (perpendicular to plates) are not con-
sidered since, for the usual coaxial lines dimensions,
the variation with y and z (parallel to plate) will impose
greater limitations.

The critical frequencies for propagation in the z
direction are those for which the iterative admittances,
as given by (12) and (14), become infinite or zero and
are the boundaries between purely propagating and
purely attenuating bands. Shown in Table I are the

TABLE 1
CRITICAL FREQUENCY RELATIONSHIPS
5 Direction
Wave Impedance
. . . Value of?
Desig | Determinental Equation At center

cos ®r | At center .

X of Di-

of Air .

. electric
Sections .
Sections

kod Foow

A ke tan > k. cOt =5 —1 Short Open
kaed keow

B ke cot 5= k.o tan —5 —1 Open Short
kzed kzaw

C koo tan o= —kzotan 5 +1 Open Open
koed kogw

D ke cot —2—= —k, cOt = -1 Short Short

2 See (16).

formulas which define these critical frequencies listed in
order of increasing frequency for a given value of # in
(17). These values could also have been obtained by
letting cos ®r= +1 in (16), as indicated in Table I, or
that ®; is an appropriate multiple of #. For any given
critical frequency condition of Table I and any given
value #, the critical frequency is determined using (17),
(7), and (8). Operation down to zero frequency can
occur only for the case #=0. In this case, the infinite se-
quence of alternating pass and stop bands, defined by the
conditions 4, B, C, and D, have a propagating region
between zero frequency and that of condition 4. For
other values of #, there will be non-zero cutoff fre-
quencies and the sequence of pass and stop bands can
be of opposite character to that for #=0. The value of
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k,(w+d)/tan 8 assumes values equal to multiples of =
and the value zero for critical frequencies of 4, B, C, and
D. The value of k, will, however, vary with frequency
making the main direction of propagation a function of
frequency. Total propagation in the z direction, for
example, is obtained only at cutoff frequencies for which
k, can be zero, as can be noted from (2) and (5). Increas-
ing frequency above these cutoff values will cause
propagation to start in the y direction. The modes of
operation then can only be characterized by = which
can assume positive or negative values. Since there is a
wide variation of the positioning of critical frequencies
with respect to cable construction, it appears best to
reserve further discussion of the modes of operation to
specific cable constructions.

Power FLow

From (1), (2), and (3), the Poynting vector for the
air sections of the line is found to be

|P,=R{|EX | H*}
Ro{#E. X |yoHy -+ 2,H.]}

| Ao *

[2.k..(1 — |T,

%)
+ yoky 2] (19)

where x,, ¥,, and z, are respectively the unit vectors in
the x, ¥, and 2z directions. The power in the z direction
is noted to be independent of position in the line, but to
be a function of frequency through the dependence of
[I‘o|Z on frequency. When the line is propagating in
its lowest mode I', is a minimum, I',= — II‘O , at the
center reference plane making the v component of
Poynting vector a minimum at the center of the air
section. ’

From (4), (3), and (6), the Poynting vector for the
dielectric section of the line is found to be

It

1 4 Tyetha’

| 4.2
]Pe = [Zokze(l - ‘ Fé 2)
| wp
+ Yoky| 1 + Deetihsee’ |2]. (20)

The total power flow crossing a given cross section of
the transmission line may be obtained by appropriately
summing the amounts of power flowing in the two direc-
tions and for both air and dielectric, as shown sche-
matically in Fig. 5.

The power in the air section in the 2 direction crossing
any given transverse cross section is

wh
Pza =

" el r )
WM tan @
where % is the height of the line and using the projected
area of the air portion of cross sectional area on a z=con-
stant plane as shown in Fig. 5.

The power in the dielectric section in the gz direction
crossing any given transverse cross section is
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kf%‘é dh
Pa= 22 A = gy
wu tan
The power in the air section in the ¥ direction cross-
ing any given cross section is

ku +w(
Py =— 1Ao|21zf (14|10 ]2~ 2|1, | cos 2 &) do’
wi —w/2

where propagation conditions are considered which
make I',= —]Fo) at 3'=0; 7.e., for image terminated
transmission conditions in the z direction. The integra-

tion yields
sin kz,,w‘J
ko A

k
K
Pyo=— |4,
gt
The power in the dielectric section in the ¥ direction
crossing any given cross section is similarly

2hB1+1rJﬂw—2!n|

[¢

k, sin k.d
P, =— | A 2h[(1 + | Te|rd + 2| T —-—]
Wi ze
AZ
74 Vi 4 Vs I//
>
R ! !
| !
A e
e A
I = P T
4 A
~
<o /:”s

Tig. 5~—Components of power flow across any given
transverse cross scection.

The total power is then the sum
PT:qu+Pze+Pyo+Pye- (21)

The continuity of the z components of the Poynting
vector at the interface between the air section and di-
electric section requires that

bl A1 — T J2] = B Ll — |

2l (22)

A knowledge of the dimensions of the line and frequency
then allows a determination of the magnitude of le
in terms of ]Ae . Quantitative values for the field
quantities of (1) through (6) can then be obtained by
expressing ‘Aol2 in terms of the total power trans-
mitted by the line. The constant 4, for a given air sec-
tion will lead in phase that of the next air section by
angle ;. This is true also for 4. of dielectric sections.

Under the low frequency approximation previously
considered, (32) reduces to
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Pr =~ [1 O L 4(1 - keff sin? ) :]
B ' [(1 — ko Sin® )2 o k12 cos 0]
kRt w4 d
. e (21a)
wy sin ¢

which agrees directly with that obtained directly from
the fields using low frequency approximation; the

bracketed term is fE,w 2z | E..|2 In terms of the volt-
age, I"= ‘Em h, the total power is
. V2 Vﬁ!
Pr = e ==
W h Zopp

kko M (w + d)/sin 8

where Z,,, is recognized {0 be the characteristic imped-
ance of the parallel plate line having a dielectric ma-
terial with the dielectric constant k.

ATTENUATION

The loss per unit length is the same at any given
cross section and the same is true for the attenuation.
For greater clarity, however, the loss per section will be
calculated and the attenuation computed in this way.
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Fig. 6—Equivalent dissapative area under dielectric.

ConpucToRr Lossts

The component of field H, gives rise to surface cur-
rents in the conductor planes in the z direction and the
field H. to currents in the v direction. Consider first the
currents in the z direction for that portion of metal
surface in contact with the dielectric. Shown in Fig. 6 is
the original area per section in contact with one metal
plane conductor and the equivalent area in terms of
both the total original area and also the magnitude of
the magnetic fields to which the surface is subjected.
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The equivalent area can be seen to be built up of an
equivalent piece taken from the original area and the
substitution of equivalent areas above and below the
field symmetry line. The power dissipated per section
in the conductor walls under the dielectric by currents
in the gz direction is then, assuming negligible reaction
on the modal character,

+d/2

D.. = 2(w + d)(cot 6 + tan 0)Rsf | 1, |2dz"

—d /2

where R, is the surface resistivity of the conductor.
Upon integration, this expression becomes

ke \?
Dez=2< >4
wp

* Ryd(w + d)(cot 0 -+ tan 6)

-2 T,

sin kgéd]
kod |

A similar integration yields for the power dissipated
per section by currents in the v direction,

ky\?
Déy = 2<”““> {A4e
w
-[1+ | T

By a similar determination of the equivalent area per
section for the walls enclosing the air dielectric section,
the power dissipated per section by currents in the z
direction may be determined to be

kao\*
D,, =2 (——) | 4,
W

.[1+|roi2+2lro

?R.d(w 4 d)(col 6 + tan )

2—1—2|F sinkzéd]

k.d

*Rw(w + d)(cot 8 + tan 6)

sin kzow:l
k0w

and the power dissipated per section in the y direction is
Ry \?
Dy, = 2 ——) | 4, | Raw(w + d)(cot 6 + tan 0)
wit
sin kz,,w:l
Roow '

The total dissipation per section in the conductors is
then

-

I

-[1+|ro

D(- = Dgz —I" Dey + Doz + Do'y- (23)

The attenuation constant arising from attenuation in
the walls is then
1 D,
2 Pr w+d

cos 6§

a, = (24)
where Pr is given by (21) and the factor cos#/w--d con-
verts the dissipation per section to that per unit length.

Again, the low frequency assumption reduces (23)
such that when combined with (21) the expression
for attenuation becomes identical to that calculated
directly from the low frequency field equations, namely,

January
sin 6
R, 1 TwHd
Qrp =2 ———— = —————— . (24a)
Z”PP

i)
Rkt

DieLecTRIC LOSSES

Power dissipated per section in dielectric is given by

dj2
D, = (w—}—d)(cotﬁ-{—tanQ)hwetan&f |E£“~’d "

—d/2

where tan § is the loss tangent of the dielectric and e is
the absolute dielectric constant. Upon integration, the
dissipated power becomes

D, = we tan 8 } A, 12 h(w + d)d(cot 6 + tan 6)
sin kzea':]

A1+ 1024 21,
o oo

(25)

That portion of the attenuation resulting from dielec-
tric losses is then

1 D.
2 Pr WHd

cos @

o =

(26)

The low frequency approximation for the attenuation
resulting from dielectric losses is given by

we tan § ———

w+ d
(5
Wi
1 ke d
= —( )( ) k tan 4.
2 keffllZ w + d

APPLICATION OF ANALYSIS TO COAXIAL LINE WITH
HEeLICcAL SUPPORT

QeLF =

(26a)

The phase constants, guide wavelength, and critical
frequencies calculated for the equivalent parallel plate
structure are assumed to be identical to those for the
corresponding coaxial line, where, as initially indicated,
the mean periphery of the coaxial line corresponds to
the width of equivalent parallel plate. This same
equivalence has been used to calculate the cutoff ire-
quencies of coaxial line with good accuracy.?

To determine the attenuation of the coaxial line, the
ratio of actual attenuation to that of the low frequency
approximation is assumed to be the same for that of the
coaxial line as for the equivalent parallel plate structure.
Thus, for a coaxial line with helical dielectric support,
attenuation resulting from conductor losses becomes

<RS 2 + RSO)
1 wd D o,

Qee = ——

2 Z,

(27)

XeLF

8S. A. Schelkunoff, “Electromagnetic Waves,” N. Y., D. Van
Nostrand Co., Inc., 1951, p. 327, Fig. 8.51.
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where Z, is the characteristic impedance of the cable,
R,; and d are respectively the surface resistivity and
diameter of the inner conductor, R, and D are respec-
tively the surface resistivity and diameter of the outer
conductor, «.rr is the low frequency approximation for
the parallel plate conductor attenuation obtained from
(24a) and a. is the actual value for the parallel plate con-
ductor attenuation from (24). The attenuation resulting
from dielectric losses is given by
G
)

where Z, is the usual low frequency value of charac-
teristic impedance of the cable, such as would be ob-
tained from capacitance measurements, Z,, is the char-
acteristic impedance of the cable with dielectric re-
moved, a.r is the low frequency approximation for
the attenuation of the parallel plate which is due to
dielectric losses as given in (26a) and «. is the actual
attenuation of the parallel plate line caused by dielec-
tric losses as given in (26). The total attenuation for the
coaxial line is

kd Z,
w+d Zy

w
— tan -

A

Aee

(28)

Ape = Qe '+' Qlece (29)

The impedance of the cable and its possible variation
with frequency requires {urther investigation.

CALCULATED PERFORMANCE OF 3 INCH 50 oM
StYROFLEX LINE AND COMPARISON WITH
MEASUREMENTS

Using the foregoing analysis, the propagation con-
stants, some cutoff frequencies, and the attenuation in
the dominant mode were calculated using the following

dimensions for % inch Styroflex line:

Griemsmann: Coaxial Line with a Helical Dielectric Support
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The dimensions for the equivalent parallel plate line
and other constant used were the following values:

421 — 163
h = ——— = 128"
2
d = .0985"
421 + 165
tan 0 = ZT—(——-¥——‘) (6 = 329
2 X .564

w=.564 cos 6 —.0985" =.380"

Polystyrene k.=2.56; tan § =.0002

Surface Resistivity of Copper=R,=2.61X10"7 \/f
Surface Resistivity of Aluminum = R, ;= 3.26 X 107 \/7.

The effect of the binder tapes is neglected, the helix
tape being assumed to extend to the outer conductor.

The critical frequencies calculated are tabulated as
follows:

=0 Con- 1 Con-
— dition - —= dition
11.31 kmc/sec (4) 20.44 kmc/sec ()
14 .41 kmc/sec (B) 23.56 kmc/sec (D)
24.59 kmc/sec (0

The chief band of interest is that between the {requen-
cies zero and 11.31 kmc/sec. An attenuation band for
propagation in the z direction exists between 11.31 and
14.41 kmc/sec with a second pass band appearing be-
tween 14.41 and 24.59 kmc/sec. The corresponding con-
ditions of Table I are listed along with the frequencies.
For =1 in (17), and the conditions indicated in Table
I, two other critical {requencies are calculated. An
attenuation band exists between (C) and (D). From the
above computations, there appears to be no higher
mode interference in the chief band of interest.

TABLE II

ANALYSIS OF OPERATION
DominaNT MODE

ky ko kze A f
Frequency _— —_— —_ T, T, P, Py Pye —
k k k g fe
kmc/sec % % %
.610 .793 1.480 1.150 - 103 .206 71.9 22.3 5.8 0
6.28 .615 789 1.478 1.160 — 154 263 71.8 21.7 6.5 .55
8.24 .620 784 1.476 1.169 — .219 .333 71.2 21.3 7.5 729
9.90 .630 177 1.472 1.189 — .363 .40 69.2 21.3 9.5 .875
10.48 .640 768 1.468 1.207 — 480 .583 64.6 22.3 13.t .927
11.03 .660 751 1.459 1.244 — .698 .869 42.7 23.8 33.5 .975
11.31 .685 728 1.447 1.292 —1.0 ‘ 1.0 0 41.6 55.4 1.0
Conductor .165” Shown in Table II above, for the parallel plate equiv-
Helix-Width .0985" alent corresponding to 1 inch Styroflex, are values of
Helix-Lay .564" phase constants divided by the free space phase con-
Helix-O.D. . 380" stant; the square of the ratio of free space wavelength
Binder-Tape 3 Tapes .907” < .00473”  divided by the guide wavelength, (A\/\,)?; the reflection
Binder-O.D. .408" coefficients associated with propagation in the z direc-
Aluminum Sheath [.D. 421" tion; and the percentages of power in given directions in
Aluminum Sheath O.D. .500” air and dielectric all tabulated as a function of fre-
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quency. As indicated in the relative frequency scale of
the table, significant changes in the data are confined
to the frequencies beyond % the critical frequency for
dominant mode operation. This is for the most part
beyond the range at present considered for commerical
use of the cable.

The over-all change in (k,/k) is 4+ 12.4 per cent, that
for (k.o/k) is —8.2 per cent and that for (k../k) is —2.3
per cent. These changes in themselves are nominal and
do not reflect the strong changes in the direction of
power flow which takes place as the critical frequency
is approached. The quantity, (A\/\,), shows that the
guide wavelength decreases with frequency at a greater
rate than the free space wavelength. For the low fre-
quency approximation (A/\,) is equivalent to the square
root of the relative dielectric constant. Continuing this
concept, it would be expected that there is a factor
which reduces the characteristic impedance by the per-
centage change in the values of (A/\,) over its zero fre-
quency value. Further investigation is required before
a useful value of impedance can be proposed since the
influence of changes in field pattern has not as vet been
considered.

The values of reflection coefficient I', and T'c are noted
to have finite values at zero frequency. The electric
field is uniform at low frequencies primarily because
there is insufficient phase variation for the reflection co-
efficients to exert their effect. At the critical frequency,
however, the variation acts like a complete standing
wave in the g direction. This variation is depicted in
Fig. 7 where the relative magnitude of electric field is

- d—pt———wW —— B
Diel. Air Section
Section
M o
o
5 | ~—at 11.31 kmc
Y -
24°33 ’4— 47° 36'—4 z
(1.31) (1.3

" "

"
te.
"

"

—p 2

Fig. 7—Variation of electric field in cross section.

plotted as a function of distance in the gz direction for
11.31 kmec/sec. This variation has a discontinuous de-
rivative at the interface between air and dielectric as
noted from the indicated angles. The variation would be
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of identical character in the transverse cross section
of the line. In the coaxial line with helical support the
corresponding cross sectional field pattern would have
one zero and one maximum in the variation with angle.
The distribution for lower frequencies lacks the zero
value but has minimum and maximum fields at the
same locations as illustrated in Fig. 7 by a plot of the
relative field variation at 9.9 kmc/sec.

The power crossing any given cross section can be
arbitrarily broken up into the power in the z direction,
P.; the power in the vy direction in the air section, Py,;
and the power in the y direction in the dielectric section,
P,.; as indicated in Fig. 5. The proportioning for the
low frequency approximation, indicated as zero fre-
quency in Table 11, could be arrived at using a TEM
mode and simple geometry. The power in the z direction
(perpendicular to the dielectric) is the largest proportion
because the dielectric makes an angle of 32 degrees with
the transverse direction. The total power in the v direc-
tion divides in proportion to the widths of the sections.
The major change up to about 10.0 kmc/sec is the gain
of power in the dielectric section, a familiar effect for
microwave transmission lines. Further increase in fre-
quency causes the propagation in the v direction to
mount rapidly being entirely in the y direction at the
critical frequency. At these higher frequencies, the
efficiency could be expected to be seriously impaired
because of the distorted mode and length of path of
transmission.

Using the foregoing analysis, the attenuation values
were calculated for % inch Styroflex cable for all fre-
quencies up to 11.31 kmc/sec, first critical frequency.

For the equivalent parallel plate line, the analysis
gives exactly the ratio of the actual attenuation to the
attenuation calculated using the low frequency ap-
proximation. Table IIT lists separately these ratios for

TABLE III
ArTeNva1IoN DATA FOR 4 IncH O.D. STYROFLEX CABLE

Correction Factor Coax Line
Parallel Peak Low Freq. Approx.
Freq. in kmc o N -
‘ oLt GeLF
QcLF QeLF tan §=.0003
0 1 1 0 0
2 1.003 1.011 3.517 L7632
4 1.008 1.035 4.974 1.526
6.28 1.028 1.112 6.23 2.396
8.24 1.06 1.31 7.14 3.144
9.9 1.232 1.576 7.829 3.778
10.48 1.413 2.153 8.05 3.999
11.03 1.915 5.329 8.259 4.209
11.31 4.069 6.849 8.364 4.316

the attenuation caused by conductor loss and that
caused by dielectric loss. These factors are assumed to
apply as correction factors to the attenuation of the
coaxial structure calculated by the use of the low fre-
quency approximation. These coaxial attenuation
values are also listed in Table III for a dielectric loss
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tangent of 0.0003. The curves for the corrected values
of coaxial attenuation are shown plotted separately in
Fig. 8 for the conductor and dielectric loss. The attenu-
ation caused by conductor loss is noted to predominate
virtually over the entire frequency band in spite of the
fact that there is a more marked correction factor for
the attenuation caused by dielectric loss.
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Fig. 8—Attenuation vs frequency, % inch O.D. 50 ohm Styroflex cable.
Loss Tangent=0.0003.

The total calculated attenuation is plotted in Fig. 8
along with curves for measured values* and the total
attenuation obtained from the use of the low frequency
approximation. In particular, the attenuation values for
the low frequency attenuation do not contain the rise
toward peak values as the critrical frequency is ap-
proached, whereas the measured values and the values
calculated from the foregoing analysis do show this
rise; use of the logarithmic scale for attenuation should
be noted. From the curve it is evident that the applica-
tion of the correction factors of Table III appears to
be warranted for frequencies above 4.0 kmc/sec. At 9.9
kmec/sec, the attenuation value for the low frequency
approximation is 30 per cent below that of the more
complete analysis. The agreement between measured
values and those of the analysis are dependent on the
value used for the loss tangent of the dielectric. A loss
tangent value of 0.0003 which is representative of

4 Measured at Signal Corps Engineering Laboratories.
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polystyrene at these frequencies was chosen for the
calculated curve of attenuation for Fig. 8. At 9.9
kmc/sec, the measured value is 7.4 per cent above the
calculated value. In view of the overlap of calculated
and measured values at 2.5 kmc/sec, a lower value of
loss tangent is perhaps appropriate for the lower fre-
quencies. The measured values can be expected to ex-
ceed the calculated values because the measured sur-
face resistance values of the metal are known to exceed
theoretical values, particularly for {requencies ap-
proaching 10.0 kmc/sec. This effect would be empha-
sized by the existence of transverse components of
surface currents which the analysis indicates. Further
detailed investigation would be necessary to warrant
closer detailed examination of the agreement between
the theoretical and experimental results.

COMMENTS

An equivalent parallel plate structure has been used to
analyze the frequency limitations and performance
characteristics of a coaxial line with a helical dielectric
support. The key to equivalence of the parallel plate
and coaxial structure is the imposed boundary condition
that, at any given transverse cross section for the
parallel plate, the fields at the sides are identical in
magnitude and phase angle. An analysis in terms of
component transmission lines, one parallel to the dielec-
tric and the other perpendicular to the dielectric, may
then be used to determine the detailed fields and their
variation with frequency. The performance of the overall
transmission line reflects the iterative line character-
istics of the component transmission line perpendicular
to the dielectric, and gives rise to pass bands and high
attenuation bands for the over-all transmission line.

For % inch Styroflex transmission line, analysis
based on the low frequency approximation, which
assumes cross sectional fields independent of angle
and an equivalent dielectric constant correspond-
ing to the air and dielectric sections in parallel, is
accurate up to about 4.0 kmc/sec or about 35 per cent
of the cutoff {requency. Above this frequency, the anal-
ysis indicates that the power component in the dielectric
directed parallel to the dielectric grows at the expense of
the power component directed perpendicular to the he-
lix while the power component in the air directed parallel
to the helix remains, for the most part, reasonably
constant. The increase of the field in the dielectric
corresponds with a reduction in the guide wavelength
and would imply a reduction in the characteristic im-
pedance of the line. Similar behavior would be expected
for other coaxial lines with a helical dielectric support,
but the details of operation would be dependent on the
proportion of dielectric and the pitch angle.

In the analysis, the line has been assumed smooth in
the direction parallel to the helix. Precise construction
of the line would be necessary to maintain this condition
since it is evident that eccentricity would give rise to a
line with periodicities in this direction.



